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Abstract
We give a brief introduction to the application of the Bethe ansatz to the study
of planar N = 4 super-Yang–Mills. The emphasis is on one-loop integrability
in the SU(2) sector. We use the Bethe ansatz to find the anomalous dimensions
for certain operators and compare these results with string theory predictions
based on the AdS/CFT correspondence.

PACS numbers: 02.30.Ik, 05.50.+q, 11.15.−q, 11.25.Hf

1. Introduction

Over the last several years, there has been a large amount of work exploiting the apparent
integrability of planar N = 4 super-Yang–Mills. Integrability is useful because it allows us
to compute quantities which would normally be impossible to compute. The main tool is the
Bethe ansatz, first proposed in 1931 as a means of solving the one-dimensional ferromagnet.
Today this system is sometimes known as the Heisenberg XXX model. This is probably the
simplest integrable model, but nevertheless, it appears in N = 4 super-Yang–Mills [1]!

At the end of 1997, Maldacena proposed that the gauge theory N = 4 super-Yang–
Mills is dual to a string theory on a curved background [2]. Several months later, Gubser,
Klebanov and Polyakov [3], and intently Witten [4] made this correspondence more precise.
The problem with verifying Maldacena’s conjecture is that the string theory is best understood
when the gauge coupling is large, but perturbative super-Yang–Mills is best understood when
the coupling is small. So much of the work in the past several years has been trying to
improve techniques so that the string theory and the perturbative gauge theory can be directly
compared.

It is believed that integrability will play a major role in this endeavour. The suggestion
that the system is integrable implies that it is solvable. Presumably, if perturbative Yang–Mills
is integrable, we will no longer be limited to small couplings. For the string theory, we know
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that it is classically integrable. But it is not known if the integrability holds up once quantum
corrections are taken into account, although there has been some recent evidence that this
indeed will be the case. The size of the quantum corrections is determined by the inverse
gauge coupling, so if we can establish integrability for the quantum string, then there is hope
that we can take the coupling down to smaller values and still have control of the system.

These notes are a brief introduction to this fascinating subject. They roughly follow a
series of lectures given at the ICTP spring school on string theory in 2004. The notes are
intended for those just starting out in the subject, or for those involved in the more formal
aspects of integrability and who would like to have a better idea of what has been going on
in this particular area. Instead of giving a detailed description of the most general type of
operators in the gauge theory, I will mainly consider only those operators that are made up of
scalar fields. In fact often I will only consider what is known as the SU(2) sector, and even
in this sector, I will only consider the simplest of solutions. However, even this relatively
simple set of operators demonstrates a rich structure. I will also mainly concentrate on the
integrability of the gauge theory to one-loop order in perturbation theory. It has been now
well established that the complete N = 4 theory is integrable at the one-loop level [1, 5].
There is also a fair amount of evidence that the integrability will hold up at higher orders in
perturbation theory [6–8], but we will not discuss this in these notes.

This paper has been arranged as follows. In section 2 we discuss the superconformal
algebra and the importance of chiral primary operators. In section 3 we construct operators in
the gauge theory. In section 4 we compute the one-loop anomalous dimensions for operators
made up of scalar fields. In section 5 we relate the computation in section 4 to a one-
dimensional spin chain, the Heisenberg XXX model. We also show how to construct the
Bethe equations for this system and we describe some solutions to the equations. In section 6
we discuss a corresponding string solution and relate it to results in section 5. In section 7 we
give a brief description of references for further reading.

2. The superconformal algebra

N = 4 super-Yang–Mills has a large symmetry group that greatly constrains many of the
properties of the theory. This symmetry group is known as the N = 4 superconformal group
and we will see it, or one of its subgroups, appearing throughout these lectures.

As the name implies, N = 4 SYM is invariant under conformal transformations. This
means that this theory does not have a mass scale. Hence all fields are massless and the
coupling constant cannot run, otherwise there would be a scale at which the coupling is, say,
of over order 1. The theory is also not confining, since confinement also implies that there
exists a scale where the theory stops confining. This is what happens for QCD, where one
refers to the QCD scale which is of order 300 MeV and is responsible for the proton mass.

In four dimensions, the conformal algebra has 15 generators. These are the four generators
of space-time translations, Pµ, the six generators of Lorentz transformations, Mµν , the four
special conformal transformations, Kµ and finally the generator of scalings, also known as
dilatations, D. These generators satisfy the conformal algebra

[D,Pµ] = −iPµ [D,Mµν] = 0 [D,Kµ] = +iKµ

[Mµν, Pλ] = −i(ηµλPν − ηλνPµ) [Mµν,Kλ] = −i(ηµλKν − ηλνKµ) (2.1)

[Pµ,Kν] = 2i(Mµν − ηµνD).

Let us now consider a local operator in the field theory O(x). Under a scaling
x → λx,O(x) scales as O(x) → λ−�O(λx), where � is the dimension of O(x). D is
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the generator of these scalings and its action on O(x) is

[D,O(x)] = i

(
−� + x

∂

∂x

)
O(x). (2.2)

So let us now consider the action of D on the commutator [Kµ,O(0)]. Using the Jacobi
identity we find

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]

= i[Kµ,O(0)] − i�[Kµ,O(0)]. (2.3)

Hence, we see that Kµ lowers the dimension by 1. Unitary quantum field theories must
have local operators whose dimensions are positive (in fact a nonconstant operator must have
� � 2.) Therefore, as we keep lowering the dimension by acting with Kµ, we must eventually
reach an operator where

[Kµ,O(0)] = 0. (2.4)

Such an operator is known as a primary operator. We can obtain new operators by acting with
the conformal algebra on the primaries. These operators are known as descendants.

N = 4 SYM is also invariant under supersymmetry transformations. In fact there are
eight separate supercharges, along with their conjugates, that generate the supersymmetry
transformations, and these combine with the conformal algebra to make a graded algebra
known as the superconformal algebra. In addition to the commutation relations in (2.1) we
have the commutation and anti-commutation relations:{

Qa
α, Q̃b̄

α̇

} = γ
µ
αα̇δab̄Pµ

{
Qa

α,Qb
β

} = {
Q̃ā

α̇, Q̃b̄

β̇

} = 0[
Pµ,Qa

α

] = [
Pµ, Q̃ā

α̇

] = 0[
D,Qa

α

] = − i

2
Qa

α

[
D, Q̃ā

α̇

] = − i

2
Q̃ā

α̇[
Mµν,Qa

α

] = iσµν
αβ εβγ Qa

γ

[
Mµν, Q̃ā

α̇

] = iσµν

α̇β̇
εβ̇γ̇ Q̃ā

γ̇ .

(2.5)

The indices α = 1, 2 α̇ = 1, 2 are indices for the fundamental representations of the two
independent SU(2) algebras that make up the four-dimensional Lorentz group. The indices
a = 1..4 and ā = 1..4 are indices for the fundamental and anti-fundamental representations
of an internal SU(4) � SO(6) symmetry. This symmetry is known as an R-symmetry. We
can see that Qa

α and Q̃ā
α̇ have dimension 1/2.

The commutator of Kµ with Qa
α and Q̃ā

α̇ will give us two sets of fermionic operators with
dimension −1/2,[

Kµ,Qa
α

] = γ
µ
αα̇εα̇β̇ S̃a

β̇

[
Kµ, Q̃ā

α̇

] = γ
µ
αα̇εαβSā

β . (2.6)

The operators Sā
α and S̃a

α̇ are known as the special conformal supercharges and with the other
supercharges gives 32 supercharges in all. The Sā

α and S̃a
α̇ also have nontrivial anti-commutation

relations, {
Sā

α, S̃b
α̇

} = γ
µ
αα̇δābKµ

{
Sā

α, Sb̄
α

} = {̃
Sa

α̇, S̃b
α̇

} = 0. (2.7)

There are also nonzero commutation relations between Qa
α and Sā

α , which are given by{
Qa

α, Sb̄
β

} = −iεαβσ
ij

ab̄
Rij + σ

µν
αβ δab̄Mµν − εαβδab̄D{

Q̃ā
α̇, S̃b

β̇

} = +iεα̇β̇σ
ij

ābRij + σ
µν

α̇β̇
δābMµν − εα̇β̇δābD.

(2.8)

We see that we have a new set of generators in the algebra Rij , where i, j = 1, . . . , 6. These are
the generators for the SU(4)R-symmetry. The supercharges are spinors under this symmetry;
all other generators are singlets and so commute with Rij .
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The supercharges Qa
α and Q̃ā

α̇ can be used to generate new operators. The operators
generated this way, along with the original operator, make up a supermultiplet. Since the
supercharges are fermionic, the maximal number of operators in a supermultiplet is 28 = 256.
If we can find operators annihilated by some of these supercharges, then the number of
operators in the supermultiplet will be reduced.

We now look for operators that will be annihilated by a maximal number of supercharges.
It is clear that an operator can be annihilated by all of the special superconformal charges
only if the operator is primary, otherwise the anti-commutation relation in (2.7) would be
inconsistent. Hence we have[

Sā
α,O(0)

] = [̃
Sa

α̇,O(0)
] = 0 for all α, α̇, ā, a. (2.9)

We now put the further restriction that[
Qa

α,O(0)
] = 0 for some α, a. (2.10)

We call such operators as chiral primaries. Consistency now requires that[{
Qa

α, Sb̄
β

}
,O(0)

] = {
Qa

α,
[
Sb̄

β,O(0)
]}

+
{
Sb̄

β,
[
Qa

α,O(0)
]} = 0

= [−iεαβσ IJ
ab̄

RIJ − εαβδab̄D + σ
µν
αβ δab̄Mµν,O(0)

]
. (2.11)

If O(0) is a scalar field, Mµν commutes with it and we get a direct relation between the
R-charge of O(0) and its dimension �.

To find what the relations are, we first observe that SO(6) is a rank 3 group and so it
has three commuting generators, which we choose to be R12, R34 and R56. We can write
the corresponding charges for these as (J1, J2, J3). The σ IJ

ab̄
are the SO(6) generators in the

fundamental representation, and in particular, the commuting generators can be expressed as

σ 12
ab̄

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 σ 34
ab̄

=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 σ 56
ab̄

=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

(2.12)

Hence, a primary operator with R-charges (J1, 0, 0) can be consistently annihilated by Q1
α,Q2

α

if � = J1. Inspection of (2.8) shows that they are also annihilated by Q̃3̄
α̇ and Q̃4̄

α̇ . Such
operators are known as chiral primaries, or BPS operators. We could also find chiral primaries
with charges (0, J2, 0) or (0, 0, J3). Furthermore, if we act on any of these operators with an
RIJ we will get an operator that is also a chiral primary.

The great advantage of chiral primaries is that their dimensions are ‘protected’. In general,
the dimension of an operator depends on the coupling constant of the Yang–Mills theory.
However, we have just seen that a chiral primary is annihilated by half the supercharges and
so the number of operators in the supermultiplet is 24 = 16. This number cannot continuously
change as we vary the coupling, nor can the R-charge change, since it too is an integer.
Therefore it must always be a chiral primary no matter what the coupling and so � is always
equal to the R-charge.

3. Gauge invariant operators in N = 4 SYM

In this section we discuss the gauge invariant operators present in N = 4 super-Yang–Mills
with SU(N) gauge group.

In N = 4 SYM, the gauge invariant operators are made up of traces of the various fields
that belong to the N = 4 multiplet. The fields themselves all lie in the adjoint representation,
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which means that under a gauge transformation, the field χ , which is a linear combination of
SU(N) generators, transforms as

χ → χ + [ε, χ ] (3.1)

where ε is the generator of gauge transformations. A field that transforms like this is said to
transform covariantly. Note that χ and ε have an implied spatial dependence. There is also a
gauge connection Aµ which transforms as

Aµ → Aµ + ∂µε + [ε,Aµ], (3.2)

and a covariant derivative

Dµ ≡ ∂µ − [Aµ, ·] (3.3)

where the dot refers to the field being acted on by the covariant derivative. It then follows that
Dµχ also transforms covariantly.

We can then make gauge invariant operators by taking traces of combinations of the
various fields. So for example, consider the single trace operator O given by

Tr[χ1χ2 . . . χL] (3.4)

where χi refers to one of the fields in anN = 4 multiplet, with or without covariant derivatives.
The operator is local, which means that the fields are evaluated at the same point in space time.
Then it is clear that O will be unchanged under the gauge transformation in (3.1). Clearly,
products of traces will also be gauge invariant.

Let us consider the particular fields in N = 4 SYM. First, we have six adjoint scalar fields
which are in the vector multiplet of the SO(6)R-symmetry. It is convenient to express these
as three complex fields, Z,WX, along with their conjugates. If we classify our fields by a
6-tuplet of charges, (h, L1, L2; J1, J2, J3), where h is the bare dimension, L1 and L2 are the
two charges of the Lorentz group SO(1, 3) and J1, J2 and J3 are the three commuting SO(6)

R-charges, then the charges for Z,W and X are given by (1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0) and
(1, 0, 0; 0, 0, 1), respectively, with the Lorentz charges being zero since the fields are scalars
and h = 1, since the bare dimension of a scalar in four dimensions is 1. The conjugate scalars
have R-charges with opposite signs.

Now let us consider the operator �L ≡ Tr[ZL]. The charges of �L are (L, 0, 0;L, 0, 0),
but based on the arguments of the previous section, this operator satisfies the BPS condition.
Hence, �L is a chiral primary. We will use �L as the starting point for all other operators. For
instance, we can act on �L with the R-symmetry group. Since �L is an element of the L-fold
symmetric representation of SO(6), then the resulting operator will also be in a symmetric
representation. The resulting operators are still BPS. In fact, if we change one of the Z fields
to be any other scalar field, say φ, then the resulting operator Tr[φZL−1] is still BPS since it is
automatically symmetric. So we learn that to make a non-BPS operator we will need at least
two of the fields not to be a Z.

There are also 16 fermionic fields that can be included inside the trace, ψa
α and ψ̄ ā

α̇ ,
where the two sets of fermions are spinors under the two different SU(2)’s that make up
SO(1, 3). The charges for these fields are of the form (3/2, 0,±1/2;±1/2 ± 1/2 ± 1/2) and
(3/2,±1/2, 0;±1/2 ± 1/2 ± 1/2) where the number of SO(6) negative signs is even for the
first set and odd for the second.

We may also act on the scalar and spinor fields with covariant derivatives. The covariant
derivatives have charges (1,±1/2,±1/2; 0, 0, 0). If we consider Tr[ZL−1DµZ], then we have

Tr[ZL−1DµZ] = Tr[ZL−1∂µZ] = 1

L
∂µ�L. (3.5)
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In other words, this operator is a descendant of �L. We can also consider operators containing
the field strength Fµ,ν = [Dµ,Dν].

It turns out that many operators are related to other operators, through the equations
of motion or Bianchi identities. For example, for scalar fields the equations of motion are
qualitatively of the form

DµDµZ = · · · (3.6)

where the right-hand side contains nonderivative terms. Hence, two contracted derivatives
acting on a scalar field can always be replaced by nonderivative terms. Since we also have
that anti-symmetrized derivatives give the field strength, we can always restrict ourselves to
symmetrized derivatives, without contractions.

It is very convenient to construct the fields using bosonic and fermionic creation operators.
We first note that an SO(1, 3) vector is a bispinor of the two SU(2)’s that make up SO(1, 3),
so the covariant derivative can also be written as Dαβ̇ . The field strength is in the (3, 1)+ (1, 3)

representation and so we can split it up into two types, the selfdual Fαβ and the anti-selfdual
F̄α̇β̇ components, where the indices are symmetrized. We also note that the scalar fields, which
are vectors in the SO(6)R-symmetry group, is equivalent to the anti-symmetric representation
of SU(4), and so can be written as φab with the indices anti-symmetrized. Also, since the anti-
fundamental of SU(4) is the result of anti-symmetrizing three fundamentals, we see that all
SU(4) indices are anti-symmetrized and all indices in either of the SU(2)’s are symmetrized
(since we are assuming that all covariant derivatives will be symmetrized). Hence, we can
consider two sets of bosonic creation operators A†

α, B
†
α̇ , one for each SU(2) and a set of

fermionic creation operators C
†
a , and build the fields as follows: start with the field ‘1’, which

we will signify as a state |0〉. Then the corresponding states for the other fields are

DkF ⇒ (A†)k+2(B†)k|0〉
Dkψα,a ⇒ (A†)k+1(B†)kC†

a|0〉
Dkφab ⇒ (A†)k(B†)kC†

aC
†
b|0〉

Dkψ̄ α̇,ā ⇒ (A†)k(B†)k+1C†
aC

†
bC

†
c |0〉

DkF̄ ⇒ (A†)k(B†)k+2C†
aC

†
bC

†
cC

†
d |0〉.

(3.7)

Putting these types of fields together in a trace, we can then add indices to the creation operators
for each position in the trace and generalize them to A

†
α,�, B

†
α̇,� and C

†
a,�, where 1 � � � L

is the position. The operator made up of these fields can then be mapped to a particular state
using these creation operators.

If we now take the limit where the number of colours N approaches ∞, then the
computation of anomalous dimensions simplifies tremendously. We will explain this more
fully in the next section, but in taking this limit we may restrict ourselves to operators
composed of single traces only. The dimensions of multitrace operators will just be the sums
of the dimensions of the single traces that make up the operator.

Later on in this paper we will also make the further simplifying assumption that the
operators are in what is known as the ‘SU(2)’ sector. Such operators are made up only of
traces of two types of scalar fields, Z and W , without their conjugate fields. The reason that
we can restrict the operators to the SU(2) sector is that it is closed to all orders in perturbation
theory under operator mixing. This is not too hard to show, just by using the conservation of
the R-charges and the Lorentz charges, as well as by making use of the property that operators
of different bare dimensions cannot mix in a conformal field theory2. By looking at the

2 A nice explanation of this property can be found in [9].
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charges for the other fields, it is straightforward to show that the only single trace operators
with the same charges as an operator made up of Z and W fields only, are operators with the
same number of Z and W fields as this original operator and with no other fields included.
The Z field can be considered the top component of a fundamental SU(2) representation and
the W is the bottom component. Note that if we were to add a third field X with charges
(1, 0, 0; 0, 0, 1), then the combination ZWX would have the same charges as two fermions
and so operators made of the three scalars would not be a closed sector. However, if we limit
the operators to include the three scalars plus the two extra fermions, then this would be a
closed sector, with the fields transforming under the supergroup SU(2|3) [7]. In any case, the
SU(2) sector is nontrivial enough to demonstrate much of the integrability found in N = 4
SYM.

Another sector we will consider is the ‘SO(6)’ sector. These are operators that are made
up of all six types of scalar fields. This sector is not closed in perturbation theory, although it
is closed to one-loop order.

4. One-loop anomalous dimensions

In this section we compute the one-loop anomalous dimensions for operators in the SU(2)

sector. To find the anomalous dimension of an operator, one considers the two-point correlator
of the operator with itself. In particular, one finds that

〈O(x)Ō(y)〉 ≈ 1

|x − y|2�
, (4.1)

where the dimension � = �0 + γ , with �0 being the bare dimension and γ being the
anomalous dimension. The bare dimension is the dimension of the operator if the gauge
theory coupling constant is 0. Therefore, for operators made up only of scalar fields, the bare
dimension is L, the number of scalar fields inside the trace.

If the gauge coupling is small, then γ 	 �0, in which case we can approximate the
correlator in (4.1) as

〈O(x)Ō(y)〉 ≈ 1

|x − y|2�0
(1 − γ ln �2|x − y|2), (4.2)

where � is an energy scale. The leading contribution to this correlator is called the tree-level
contribution.

Let us now investigate the role of large N. For example, let us consider the operator
considered in the previous section, �L, rescaled to

�L,r = 1√
LNL/2

Tr ZL = 1√
LNL/2

ZA
B̄ZB

C̄ · · ·Z...
Ā, (4.3)

where we have explicitly put the colour indices on the adjoint fields. At tree level, the correlator
of a Z field and its conjugate is〈

ZA
B̄(x)Z̄C̄

D(y)
〉 ∼ δA

DδB̄
C̄

|x − y|2 . (4.4)

If we now contract this operator with its conjugate, then the leading contribution to the
correlator comes from contracting the individual fields in order, as shown in figure 1(a) and
(b). The contribution of all ordered contractions is

〈�L,r(x)�̄L,r (y)〉 ∼ LNL

(
√

LNL/2)2|x − y|2L
= 1

|x − y|2L
, (4.5)
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(c)(a) (b)

Figure 1. Contractions of fields. The horizontal lines represent the operators and the ordered
vertical lines the contractions between the two operators of the individual fields inside the trace.
(a) and (b) are planar while (c) is nonplanar.

where we pick up L powers of N from summing over the colours. The contraction shown in
figure 1(c) is an example of a nonplanar graph, in other words the lines connecting the fields
cannot be drawn on the plane. Instead one must lift the line out of the plane to connect to the
field in the other operator. If we carefully count the sums over the colours, we see that there
are two less factors of N. Hence this diagram is suppressed by a factor of 1/N2. Note that
this analysis is valid so long as L 	 N , otherwise the number of possible contractions will
overwhelm the suppression factors.

It is also convenient to write (4.5) in terms of its Fourier transform,

〈�L,r(x)�̄L,r (y)〉 ∼
∫ L∏

k=1

[
exp(−ipk · (x − y))

d4pk

(2π)4

i

p2
k

]
, (4.6)

which will be convenient for corrections to γ .
To find the one-loop anomalous dimension, let us examine the bosonic part of the N = 4

action, which is given by

S = 1

2g2
YM

∫
d4x

−1

2
TrF2 + TrDµφiDµφi −

∑
i<j

Tr[φi, φj ]2

 , (4.7)

where gYM is the Yang–Mills coupling. The fields φi refer to the six bosonic scalars, where
we will often call the index i the flavour index. Their relation to Z and W is given by

Z = 1√
2
(φ1 + iφ2) W = 1√

2
(φ3 + iφ4). (4.8)

Now there are several Feynman graphs that contribute to the anomalous dimension of an
operator, but remarkably, because of the power of the superconformal algebra, we only need
to consider one type of Feynman graph. Happily, it is the easiest graph to compute. If we
study (4.7), we see that the last term is a 4-scalar interaction term which we can expand to

1

g2
YM

∑
i<j

(Tr φiφiφjφj − Tr φiφjφiφj ). (4.9)

This vertex should then be inserted in the correlator and be Wick contracted with two
neighbouring fields in the incoming operator and two neighbouring fields in the outgoing
operator so that the resulting Feynman graph is planar. In particular, we should consider the
correlator〈(

φi1φi2

)A
B̄
(x)

i

g2
YM

∫
d4z

∑
i<j

(Tr φiφiφjφj − Tr φiφjφiφj )
(
φj1φj2

)C
D̄
(y)

〉

= NδA
D̄δC

B̄

ig2
YMN

2

∫
d4p1

(2π)4

d4p2

(2π)4

d4p3

(2π)4

d4p4

(2π)4
(2π)4δ4(p3 + p4 − p1 − p2)

× i

p2
1

i

p2
2

i

p2
3

i

p2
4

ei(p3+p4)y−i(p1+p2)x
(
4δj2

i1δ
j1

i2 − 2δj1
i1δ

j2
i2 − 2δi1i2δ

j1j2
)
. (4.10)
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The set of delta functions for the flavour indices arise from the two terms in (4.9). There are
four ways to contract the indices in (4.9) with the incoming and outgoing fields. The first
term in (4.9) always reverses the indices between the incoming and outgoing fields. The last
term either contracts the incoming indices with the outgoing indices in order, or it contracts
incoming to incoming and outgoing to outgoing. Note that there are two factors of N in (4.10),
coming from sums over colour factors, while the correlator

〈(
φi1φi2

)A
B̄
(x)
(
φj1φj2

)C
D̄
(y)
〉

has
only one such factor. In fact, it is not difficult to see that for all planar graphs, every factor of
g2

YM comes with a factor of N. Hence, it is convenient to define a new expansion parameter
λ ≡ g2

YMN , also known as the ’t Hooft parameter.
Another important feature is that the integrals in (4.10) lead to log divergences and need

to be cut off at an ultraviolet scale �. It is then not difficult to show that (4.10) is given by

NδA
D̄δC

B̄

|x − y|2
λ

16π2
ln(�2|x − y|2)(2δj2

i1δ
j1

i2 − δj1
i1δ

j2
i2 − δi1i2δ

j1j2
)
. (4.11)

There will also be other contributions to the one-loop anomalous dimension. These can
come from gluon exchange between scalar fields or self-energy diagrams. We could compute
these contributions, but we do not actually need to do this. It is sufficient to note that since
gluons have no R-charges and since the flavour of a scalar going into a self-energy diagram
is the same coming out, these types of diagrams will not change the flavour indices. Hence,
these interactions will only lead to terms where the flavour indices are grouped as

δj1
i1δ

j2
i2 (4.12)

between neighbouring fields in the correlators.
Let us now apply these results to 〈O1(x)O2(y)〉, where the O(x) are in the SO(6) sector,

that is they are composed of L scalar fields with explicit flavour indices:

O1(x) = 1

NL/2
Tr
(
φi1(x) · · · φiL(x)

)
O2(x) = 1

NL/2
Tr
(
φj1(x) · · · φjL

(x)
)
. (4.13)

Examining (4.11), we see that the one-loop contribution to the correlator is

〈O1(x)O2(y)〉 = λ

16π2

ln �2|x − y|2
|x − y|2L

L∑
�=1

(2P�,�+1 − K�,�+1 − C)δj1
i1δ

j2
i2 · · · δjL

iL + cycles.

(4.14)

P�,�+1 is an exchange operator and acts on the flavour indices as

P�,�+1δ
j1

i1 · · · δj�
i�δ

j�+1
i�+1 · · · δjL

iL = δj1
i1 · · · δj�+1

i� δ
j�

i�+1 · · · δjL
iL . (4.15)

K�,�+1 is called a trace operator and its action on the flavour indices is

K�,�+1δ
j1

i1 · · · δj�
i�δ

j�+1
i�+1 · · · δjL

iL = δj1
i1 · · · δi�,i�+1δ

j�,j�+1 · · · δjL
iL . (4.16)

We also have a constant C, to be determined shortly, which has contributions from gluon
exchange, self-energy and the 4-scalar interaction. The sum over cycles refers to contractions
where the j indices are uniformly shifted.

If we add this correction to the tree-level correlator, then the correlator up to the one-loop
level is

〈O1(x)O2(y)〉 = 1

|x − y|2L

(
1 − λ

16π2
ln �2|x − y|2

L∑
�=1

(C − 2P�,�+1 + K�,�+1)

)
× δj1

i1 · · · δjL
iL + cycles. (4.17)
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If we compare this result to (4.2), we see that because of mixing between the operators, the
anomalous dimension should be thought of as an operator, �, whose eigenvalues are γ . In
particular, we find for operators made up of scalar fields, that � is given by [1]

� = λ

16π2

L∑
�=1

(C − 2P�,�+1 + K�,�+1). (4.18)

Note that � is also the one-loop correction to the dilation operator D in the SO(6) sector. To
find C, we note that an operator in the symmetric representation of SO(6) is a chiral primary
operator, which means its anomalous dimension is zero. The symmetric representations are
traceless; hence P�,�+1 and K�,�+1 acting on such operators are 1 and 0, respectively. Hence
we see that C = 2.

If we now restrict the operators to the SU(2) sector, then there is no contribution from
K�,�+1 since the operators only have Z and W and not their conjugate fields. In this case we
have

�SU(2) = λ

8π2

L∑
�=1

(1 − P�,�+1). (4.19)

Remarkably, this operator is the Hamiltonian of the XXX Heisenberg periodic spin chain with
L lattice sites. In fact, we can think of the Z field as an up spin and the W field as a down
spin, and the energies of the various states of the spin chain correspond to the anomalous
dimensions of the operators. Note that the Hamiltonian can also be written as

�SU(2) = λ

8π2

L∑
�=1

(
1

2
− 2 �S� · �S�+1

)
. (4.20)

Hence the spin chain is ferromagnetic and the ground state has all spins aligned, with total spin
L/2. But this is the symmetric representation, in other words, this corresponds to the chiral
primary operator. So nonchiral primaries can be thought of as excitations about the ground
state.

5. Using the Bethe ansatz to compute anomalous dimensions

Now that we have mapped the one-loop SU(2) sector to the XXX Heisenberg model, we can
use all of the machinery of integrability to compute the anomalous dimensions in this sector.
While we will not prove it here, it also turns out that the SO(6) sector [1] as well as the full
N = 4 set of operators will also lead to integrable spin chains [5].

Since the Heisenberg model is integrable, it basically means that the scattering of
excitations about the ground state can be reduced to two-body scattering. The simplest
excitation is known as a ‘magnon’. One starts with the state with all spins up, which is a
ground state, and flips one of the spins. Such a state is not an eigenstate of the Hamiltonian,
but the following superposition is

|p〉 = 1√
L

L∑
�=1

eip�|�〉, (5.1)

where |�〉 refers to the state with a down spin at position �. In order for the state to be single
valued, we require that p = 2πn/L. One can also readily see that the energy of this state is

E = ε(p1) = λ

2π2
sin2 p

2
. (5.2)
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However, while such a state exists for the spin chain, there is no corresponding operator in
the gauge theory. This is because the spin chain wavefunction must be invariant if all sites are
translated completely around the circle. However, because of the trace, the gauge invariant
operators are invariant if all the fields are shifted over by just one site. Hence, the only single
magnon solution that would correspond to a gauge invariant operator would have p = 2πn.
But this is just the ground state which is equivalent to no magnons at all. This condition for
the gauge invariant operators is known as the ‘trace condition’.

We next consider a state with two magnons. As a first attempt at writing down a state, we
consider

|p1, p2〉 = 1

L

∑
�1,�2

exp(ip1�1 + ip2�2)|�1, �2〉, (5.3)

where �1 and �2 are the positions of the two down spins. However, this cannot be completely
correct since among other things, the wavefunction is non-zero if �1 = �2. But this is
impossible since a site has either an up spin or a down spin. It cannot have two down spins.
This means that the wavefunction must be zero if �1 = �2, which further implies that the
magnons interact with each other.

To sort this out, let us take the limit L → ∞ and consider the state

|p1, p2〉 =
∑
�1<�2

exp(ip1�1 + ip2�2)|�1, �2〉 + S(p1, p2)
∑
�1<�2

exp(ip2�1 + ip1�2)|�1, �2〉. (5.4)

This describes the state where a magnon with momentum p1 comes in from the left to scatter
with a magnon coming from the right with momentum p2. Hence S(p1, p2) is the S-matrix.
If the magnons are well separated, then they may be treated individually, in which case we
find that the energy of this state is just the sum of the magnon energies, E = ε(p1) + ε(p2).
To find the S-matrix, we observe that the ingoing and outgoing parts of the state will overlap
with each other when acted on by the Hamiltonian at �2 = �1 + 1. Consistency then leads to
the equation

λ

8π2
(−e−ip1+ip2 − e2ip2 − (eip1−ip2 + e2ip1)S + 2eip2 + 2eip1S)|�, � + 1〉

= λ

8π2
(4 − eip1 − e−ip1 − eip2 − e−ip2)(eip2 + eip1S)|�, � + 1〉. (5.5)

Thus, we find

S(p1, p2) = − cos p1+p2

2 − exp
(
ip2−p1

2

)
cos p1+p2

2 − exp
(−ip2−p1

2

) . (5.6)

It is convenient to introduce a new quantity u, called the rapidity, where

u = 1

2
cot

p

2
, (5.7)

in which case the S-matrix becomes

S = u2 − u1 + i

u2 − u1 − i
. (5.8)

Let us now put L finite again. Since the interactions between the magnons are local, there is
no correction to the S-matrix due to finite size effects. Moreover, since the only thing magnons
can do when they scatter is exchange their momentum, we can extend the two-magnon case
to an arbitrary number of magnons M. To this end, suppose we have M magnons and we want
to determine the allowed momenta for the magnons. For a single magnon, we saw that the
periodicity condition leads to a quantization condition for the magnon momentum. In other
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words, when we transport the magnon around the circle, the wavefunction must come back to
itself. If we now have M magnons, then when we transport a magnon around the circle, it will
pass through the other M − 1 magnons. Hence, our quantization condition is

eipj L

M∏
k =j

S(pj , pk) = 1, (5.9)

or in terms of the rapidity(
uj + i/2

uj − i/2

)L

=
M∏

k =j

uj − uk + i

uj − uk − i
. (5.10)

The energy, written in terms of the uj , is

E = λ

8π2

M∑
j=1

(
i

uj + i/2
− i

uj − i/2

)
. (5.11)

and the total momentum P of all the magnons is given by

eiP =
M∏

j=1

uj + i/2

uj − i/2
= 1. (5.12)

The last equality in (5.12) is due to the trace condition. Note that in (5.8) if uj = uk then
S(uj , uk) = −1, in which case the wavefunction in (5.4) is zero. Hence, we must insist that
uj = uk for all j = k.

The M equations in (5.10) were written down by Bethe in 1931 and are appropriately
called the Bethe equations [10]. Hence, to find the one-loop anomalous dimensions in the
SU(2) sector it is only necessary to solve these equations!

However, in practice, solving the Bethe equations is in general not possible. In the
remaining part of this section I will review a few cases where one can find solutions. The
first such solution involves two magnons. In this case, the trace condition in (5.12) leads to
u2 = −u1. Hence the Bethe equations reduce to(

uj + i/2

uj − i/2

)L−1

= 1. (5.13)

Hence, we have that pj = 2πn/(L − 1) for any integer n and the energy of this state is

E = λ

π2
sin2 πn

L − 1
. (5.14)

The first nontrivial case occurs for L = 4, where by choosing n = 1 we find3 E = 3λ
4π2 . Note

that this corresponds to the operator Tr Z2W 2 − Tr ZWZW . It turns out that this operator is
a superpartner of the Konishi operator, Tr φiφ

i , which is an SO(6) singlet. Since they are
superpartners they have the same anomalous dimension. Hence we can find the anomalous
dimension for Konishi, an operator outside the SU(2) sector, by considering another operator
in the SU(2) sector. This has been used to great effect for higher loop contributions [6]. Note
that in the case of large L, the result in (5.14) approaches the result for two noninteracting
magnons of opposite momentum [11].

The second example I will consider consists of a large number of magnons, where
L � 1,M � 1 and α ≡ M/L finite. We will call α the filling fraction. If we assume that the

3 The case n = 2 for L = 4 and n = 1 for L = 3 are not allowed, since in these cases the two rapidities would be
equal.
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momentum of the individual magnons is of order 1/L, then p ∼ 1/u and the Bethe equations
can be approximated as

eiL/uj ≈
M∏

k =j

exp

(
2i

uj − uk

)
. (5.15)

Taking the log on both sides of the equation, we are left with

L

uj

− 2πnj ≈ 2
M∑

k =j

1

uj − uk

, (5.16)

where nj is an integer and corresponds to the branch of the log. If we now choose the rescaled
variables xj = uj/L and assume that the xj fall into dense sets, then the sums can be replaced
by integrals and we obtain the integral equation [12]

1

x
− 2πnJ = 2

∑
K

−
∫
CK

dx ′ρ(x ′)
x − x ′ x ∈ CJ , (5.17)

where ρ(x) is the density

ρ(x) = 1

L

M∑
k=1

δ(x − xj ). (5.18)

The bar through the integral indicates that this is a principle-valued integral and the CJ are a
collection of contours that the rapidities lie on. If two rapidities have the same value for nj ,
then they will lie on the same contour.

In this limit, the total momentum and energy are given by

P =
∑
K

∫
CK

dx ρ(x)

x
E = λ

8π2

∑
K

∫
CK

dx ρ(x)

x2
. (5.19)

In fact, the XXX chain has L different conserved quantities, which we may call Qn, and these
quantities are given by

Qn = 1

Ln−1

∑
K

∫
CK

dx ρ(x)

xn
. (5.20)

If we define the ‘resolvent’ G(x) as

G(x) =
∑
K

∫
CK

dx ′ρ(x ′)
x − x ′ , (5.21)

then we see that G(x) is the generator of the conserved charges [13, 14]. In other words, if
we Taylor expand about x = 0, we find

G(x) =
∑

n

xn

n!
G(n)(0) = −

∑
n

xnLn−1

n!
Qn. (5.22)

Hence,

Qn = − 1

Ln−1
G(n)(0). (5.23)

The equation in (5.17) is solved using the Riemann–Hilbert method. We will consider the
simplified case where all roots lie on a single contour [12, 16, 17] , so the equation becomes

1

x
− 2πn = 2 −

∫
C

dx ′ρ(x ′)
x − x ′ x ∈ C. (5.24)
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The goal is to find the density that satisfies the equation, or more precisely, the resolvent that
arises from the density. First, let us get an idea about the general shape of the contour. In
order for the energy to be real, the contour needs to be symmetric under complex conjugation
in the x plane. Second, we note that the integral equation is similar to one that arises when
considering large N matrix models [15]. For these, one looks for extrema of the effective
action of the matrix eigenvalues. If the matrix potential is V (x), then these extrema satisfy
the force balancing equation

0 = −V ′(x) + 2
∫

dx ′ρ(x ′)
x − x ′ , (5.25)

where the second term on the rhs is due to the repulsive force among the eigenvalues. Assuming
that the central potential is attractive, the eigenvalues will arrange themselves on the real line,
with the attractive central potential balanced by the repulsive potential between the eigenvalues.
Applying the same logic to (5.24), we see that the potential is V (x) = ln x − 2πnx. Hence,
this potential is repulsive, so the rapidities would be driven away from each other if they were
constrained to be real. However, the rapidities can be complex, and so what will happen is
that they will be pushed into the imaginary direction. Hence, the contour C will cross the real
axis at one point and be symmetric under complex conjugation.

Now, for large x, the resolvent G(x) is approximately

G(x) ≈ 1

x

∫
C

dx ′ρ(x ′) = α

x
, x → ∞. (5.26)

We also have from (5.19), (5.22) and the trace condition that

G(0) = −2πm, (5.27)

where m is an integer. Finally, from (5.24) we see that G(x) has a square root branch cut along
the contour, where on the contour

G(x + i0) + G(x − i0) = 1

x
− 2πn, (5.28)

and where the ±i0 refer to just before and after the cut. Putting this all together, we find that
the resolvent is given by

G(x) = 1

2x

(
1 +

√
(2πnx − 1)2 + 8πmx

)− πn. (5.29)

For large x, we see that G(x) behaves as

G(x) �
x→∞

m/n

x
, (5.30)

and so the filling fraction is α = m/n. Expanding G(x) about zero, we also see that

E = − λ

8π2L
G′(0) = λm(n − m)

2L
. (5.31)

6. Comparison to circular solutions in string theory

In this section we will compare our results in the previous section to results from string theory.
Over the last few years there has been much progress in this area, with surprising agreement
between the string predictions and the gauge theory predictions coming from their spin chain
structure.

The AdS/CFT correspondence is a conjectured duality between N = 4 SYM and type
IIB string theory on the ten-dimensional background AdS5 × S5. For our purposes the duality
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means that for every gauge invariant operator there is a corresponding string state, and the
dimension of the operator is equal to the energy of the string in appropriate units. The radius
R of the AdS5 and S5 are equal and has the relation to the gauge coupling, R4 = λα′2, where
α′ is inversely related to the string tension. We also note that the isometry group of this
space is SO(2, 4) × SO(6), which corresponds to the conformal symmetry and the internal
R-symmetry of the gauge theory.

Unfortunately, solving string theory in this background is a difficult, and so far, unsolved
problem. The main stumbling block is that not only is the space-time curved, but there is a
background flux which comes from the Ramond–Ramond sector. There has yet to be found a
practicable method for dealing with such fluxes. Nevertheless, string theory in AdS5 × S5 is
known to be classically integrable [18], so while we have yet to find a full quantum treatment
of the theory, we can still consider its classical behaviour and make comparisons to the
corresponding classical behaviour in the gauge theory. We will restrict our discussion to the
classical solutions that correspond to the one-cut solution of the previous section.

Since we are staying within the SU(2) sector, this means that on the string theory
side the strings are constrained to move on the subspace Rt × S3, where Rt is the global
time component of the AdS5 and the S3 is a subspace of S5. The isometry group of S3

is SO(4) � SU(2) × SU(2), so there is an extra SU(2) symmetry. It is convenient to
parameterize the S3 subspace with the two by two matrix

g ≡
(

Z W

−W Z

)
det g = 1. (6.1)

The SU(2) × SU(2) isometry group then corresponds to left and right SU(2) group
multiplication on g. From this point of view, we see that the SU(2)L doublets, corresponding
to left multiplication, are(

Z

−W

)
and

(
W

Z

)
, (6.2)

while the SU(2)R doublets , corresponding to right multiplication, are

(Z W) and (−W Z). (6.3)

We see that Z and W are both top components of SU(2)L, but Z is a top component of SU(2)R
and W is a bottom component. Hence, SU(2)R corresponds to the SU(2) sector we have
chosen for the gauge theory.

To find the solutions for the string motion, we consider the polyakov action

S = 1

4πα′

∫
dτ dσ

√−hhαβGµν∂αXµ∂βXν, (6.4)

where Gµν (hαβ) is the metric on the target space (world-sheet). In conformal gauge we can
choose h00 = −1, h11 = 1 and t = κτ . The target space metric is

ds2 = R2(−dt2 + dZ dZ + dW dW), (6.5)

with the constraint ZZ + WW = 1. The action then becomes

S =
√

λ

4π

∫
dτ dσ(−κ2 + ŻŻ + ẆẆ − Z′Z

′ − W ′W
′
+ �(ZZ + WW − 1)), (6.6)

where � is a Lagrange multiplier to enforce the constraint. The equations of motion for Z and
W are

Z̈ − Z′′ + �Z = 0 Ẅ − W ′′ + �W = 0 (6.7)
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and the solution for � is

� = ŻŻ + ẆẆ − Z′Z
′ − W ′W

′
. (6.8)

Varying S with respect to hαβ leads to the Virasoro constraints

κ2 = ŻŻ + ẆẆ + Z′Z
′
+ W ′W

′
0 = ŻZ

′
+ Z′Ż + ẆW

′
+ W ′Ẇ . (6.9)

There are three isometries of the metric with corresponding conserved quantities. The
isometries are translations along the t direction and the phases in Z and W . The conserved
quantities are the energy

E =
√

λ

2π

∫ 2π

0
dσ ṫ =

√
λκ, (6.10)

and the two angular momenta

J1 =
√

λ

2π

∫ 2π

0
dσ(−iZŻ) J2 =

√
λ

2π

∫ 2π

0
dσ(−iWẆ). (6.11)

We would expect J1 and J2 to count the number of Z and W fields in the gauge theory operator.
If we now make the following ansatz for the solutions [19, 20]:

Z = cos θ0 exp(i(ω1τ + m1σ)), W = sin θ0 exp(i(ω2τ + m2σ)), (6.12)

then the equations of motion are satisfied if

ω2
1 − m2

1 = ω2
2 − m2

2. (6.13)

We also have that the angular momenta are

J1 =
√

λω1 cos2 θ0, J2 =
√

λω2 sin2 θ0, (6.14)

and the Virasoro constraints are

E2 = J 2
1

cos2 θ0
+ λm2

1 cos2 θ0 +
J 2

2

sin2 θ0
+ λm2

2 sin2 θ0

0 = m1J1 + m2J2.

(6.15)

Using these equations, we can express the energy in terms of three quantities, say m1,m2

and J1. In general, the result can be written as an expansion in λ, with the first two terms given
by [20]

E = L − λm1m2

2L
+ · · · , (6.16)

where L = J1 + J2. Note that the first term in the energy corresponds to the bare dimension of
the operator. The second term should correspond to the one-loop correction. This expression
is consistent with the one-cut solution of the previous section if we identify m1 = m and
m2 = −(n−m). If m1 = −m2 ≡ m, then and one finds that J1 = J2 and the energy is simply
[19]

E =
√

L2 + λm2. (6.17)

We should point out that the classical string theory computation will be reliable if the
quantum corrections are small. If we examine (6.6), we see that 1/

√
λ plays the role of h̄, and

so the string computations are reliable if λ � 1. However, perturbation theory in the gauge
theory is best under control if λ 	 1. Hence, it seems strange to be comparing the string and
gauge solutions. The reason that we are able to make the comparison is because the effective
expansion parameter is actually λ/L2. This is known as BMN scaling [11]. Hence, this can
be made small on the string side while still keeping λ large. On the gauge theory side, if there
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is truly BMN scaling then λ can be made large and still perturbation theory is under control,
allowing for a direct comparison between the string and the gauge theory.

If one continues these arguments to two-loop order, one still finds agreement between
the gauge theory and the string theory results [17, 21], but at three-loop order the results
begin to differ [21]. These differences should not be taken as a refutation of the AdS/CFT
correspondence. Instead this is most likely caused by a breakdown of BMN scaling on the
gauge theory side.

7. Suggestions for further reading

In this final section we give a brief list of references for further reading.
The most comprehensive review of the AdS/CFT correspondence is in [22]. Among

other things, there is a very good exposition of the superconformal algebra. There is also a
comprehensive list of references to other works. This was written in 1999 and of course much
has happened since then.

The major breakthrough after the original flurry of papers in AdS/CFT was the paper
by Berenstein, Maldacena and Nastase [11]. They showed how to go beyond the protected
operators in the comparison of gauge and string theory predictions. In the spin chain language,
they are considering long chains with small numbers of magnons and small momentum. In
this limit the interactions between the magnons can be ignored. In [23] the 1/L corrections
on the string side were computed.

Integrability in gauge theory was first seen by Lipatov in high energy QCD [24].
Essentially QCD becomes conformal at high energies and the anomalous dimensions of
operators with covariant derivatives can be computed. Soon thereafter, Faddeev and
Korchemsky mapped this problem to a spin chain with spins in the fundamental representation
of SL(2) [25]. There has also been a lot of follow up work to this approach [26].

The original work on integrability in N = 4 was in [1] for the scalar operators. The one-
loop generalization to the full set of operators was carried out in [5]. Higher loop integrability
was first investigated by Beisert, Kristjansen and Staudacher [6], where it was shown that the
SU(2) sector is integrable to the first 2 orders in perturbation theory. Assuming that the theory
remains integrable to higher orders, these authors were able to derive the dilatation operator
to three-loop order. This was later explicitly confirmed by actual field theory calculations
[27–29].

Semiclassical analysis of string motion on AdS5×S5 was first considered in [30]. This was
later followed up by many other works [12, 19, 20, 31–36]. The classical integrability of string
theory on AdS5 ×S5 was first shown for the bosonic part in [37] and the full theory in [18]. Its
relation to a Yangian symmetry was described in [38]. In [17], the classical integrability was
exploited for string theory on Rt × S3 to show that all classical string solutions of the ‘finite
gap’ type were consistent with the gauge theory predictions to second order in λ. Previous to
this, Serban and Staudacher showed that there was consistency for certain examples, but they
also showed that the third order results differed from each other [21]. This was also apparent
in the work of [23], where the 1/L corrections to BMN on the string theory side differed
from results obtained in [6]. In [39], some difficulties in even comparing the gauge and string
results were discussed. Generalizations of [17] to other sectors have also been determined
[40–44].

Soon after [17], Beisert, Dippel and Staudacher proposed a Bethe ansatz for the full SU(2)

sector on the gauge side [45], and which was similar in structure to the integral equations in
[17]. The ansatz is asymptotic only, which means that it gives the correct perturbative
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contribution only up to order λL for an operator of length L. Recently it was shown how to
derive these same Bethe equations from the Hubbard model [46].

Using the integral equations in [17], Arutyunov, Frolov and Staudacher proposed a Bethe
ansatz for the SU(2)R of string theory on Rt ×S3 [47]. The Bethe equations necessarily differ
from the BDS proposal, with an extra phase factor in the S-matrix. The AFS proposal recently
received some confirmation by Gromov and Kazakov, who showed that the AFS proposal was
consistent with strings quantized on Rt × S3 [48].

Another approach to studying the AdS/CFT string correspondence is to study an effective
action for the Yang–Mills sector. This was first done by Kruczenski [49], who showed that
the classical limit of the XXX model, the Landau–Lifshitz model, can be extracted from the
string sigma model in the limit of large L and leading order in λ. This was extended to other
sectors and to higher loops in many other papers [50–62].

Quantum corrections to the classical string motion were first considered by Frolov and
Tseytlin for circular strings on Rt ×S5 [63]. Further progress was made in [64–69]. Hernandez
and Lopez computed the one-loop corrections to the AFS phase factor [70]. Freyhult and
Kristjansen then showed that the Hernandez–Lopez result is consistent with the one-loop
corrections in the SU(3) sector with two equal R-charges [71].

Much of the recent work has been focused on finding the complete S-matrix. In [72],
Staudacher showed that it might be possible to find the S-matrix for the gauge or the string
theory without actually knowing the dilatation operator. This was later extended in [73].
In [74], Beisert showed that the dispersion relation for magnon excitations are completely
determined by the assumption of integrability and the superconformal algebra. Even more
surprising, the S-matrix is also completely determined, up to an overall phase. In [75], Janik
argued that this phase factor would satisfy a single equation if the spin chain has a symmetry
analogous to crossing symmetry in a relativistic theory. It was quickly shown that the AFS
phase factor is consistent with this equation to leading order [76]. In [77], a solution was given
to the Janik equation up to a homogeneous term that hopefully can be eventually determined
by matching it to the classical string behaviour.

There has also been some interesting work on finding the quantum version of the string
theory. In [78] Mann and Polchinski start with a known integrable conformal model, the
OSp(2m + 2|2m) supercoset. This theory has an SU(2) sector and they are able to reproduce
the classical results in [17] with a large number of excitations. A similar study was done in
[79], where they consider the sigma model on R × Sn. This theory is not conformal, it is
actually asymptotically free, but nevertheless they are still able to get the classical results in
[17]. In [80], Klose and Zarembo study the quantization of the Landau–Lifshitz model as well
as the sigma model of R × S3 with Virasoro constraints.

Finally, other reviews on integrability in N = 4 are Beisert’s thesis [8], as well as reviews
by Tseytlin [81], Zarembo [82] and Plefka [83]. An excellent review of the Bethe ansatz,
including its applications to other systems as well as a thorough discussion of the S-matrix
and its analyticity properties can be found in the review by Faddeev [84].
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